On the Discretization of Linear Fractional Representations of LPV Systems

Detailed derivation of the formulas

R-11-037

Authors:
R. Tóth
M. Lovera
P. S. C. Heuberger
M. Corno
P. M. J. Van den Hof

August 11, 2011
Abstract

Commonly, controllers for Linear Parameter-Varying (LPV) systems are designed in continuous time using a Linear Fractional Representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a discrete-time model of the plant which is often derived from a continuous-time first-principle model. Existing discretization approaches for LFRs describing LPV systems suffer from disadvantages like the possibility of serious approximation errors, issues of complexity, etc. To explore the disadvantages, existing discretization methods have been reviewed in [4] and novel approaches have been derived to overcome them. The proposed and existing methods have been compared and analyzed in terms of approximation error, considering ideal zero-order hold actuation and sampling.

In this technical report a detailed derivation of the formulas and results presented in [4] is given as a supplement and background material for interested readers.
Contents

1 Detailed derivations
 1.1 Example 1: proof of stability, CT case .. 3
 1.2 Example 1: computation of the stability bound, DT case 3
 1.3 Example 1: LFR realization ... 4
 1.4 Example 2: computation of the state evolution ... 4
 1.5 Example 2: computation of the stability bound ... 5
 1.6 Example 2: LFR realization ... 5
 1.7 Example 3: LFR realization ... 6
 1.8 Example 3: computation of the stability bound ... 6
 1.9 LFR realization via the rectangular approach ... 7
 1.10 LFR realization via the polynomial approach .. 7
 1.11 Example 2nd-order polynomial: computation of the stability bound 8
 1.12 LFR realization via the 1,1-Padé approach .. 9
 1.13 Example 1,1-Padé: computation of the stability bound 10
 1.14 LFR realization via the trapezoidal approach .. 11
 1.15 LFR realization via the 3-step Adams-Bashforth approach 11
Chapter 1

Detailed derivations

1.1 Example 1: proof of stability, CT case

Consider,

\[
\begin{align*}
\dot{x}(t) &= -p(t)x(t) + u(t), \\
y(t) &= x(t),
\end{align*}
\]

(1.1a)

with \(0 < p_{\text{min}} \leq p(t) \leq p_{\text{max}}\). This LPV system is asymptotically stable, if \(\exists K > 0\) s.t.

\[
V(x(t)) = x(t)Kx(t),
\]

(1.2)

is a Lyapunov function satisfying that

\[
\begin{align*}
V(x(t)) &= 0 \text{ if } x(t) = 0 \\
\frac{d}{dt}V(x(t)) &< 0 \text{ if } x(t) \neq 0
\end{align*}
\]

(1.3a)

for all valid state-trajectory \(x \in (\mathbb{R}^{n_x})^{\mathbb{R}}\) (with the associated \(p \in \mathbb{P}^{\mathbb{R}}\)) and \(t \in \mathbb{R}\). As (1.1a-b) is a polytopic LPV system, we can characterize its stability with a much stronger statement (see e.g. [2]): (1.1a-b) is asymptotically stable if and only if

\[
\exists K > 0 \text{ s.t. } A(p)K + KA(p) < 0
\]

(1.4)

for all \(p \in \mathbb{P}\) where \(A\) is defined by Eq. (17a) in the paper. In this case \(A(p) = -p\), hence for asymptotic stability we need to show that \(\exists K > 0\) s.t.:

\[
-2Kp < 0,
\]

(1.5)

for all \(0 < p_{\text{min}} \leq p \leq p_{\text{max}}\). As \(p > 0\) and \(K > 0\), hence (1.5) always holds.

1.2 Example 1: computation of the stability bound, DT case

Now consider the discretized form of (1.1a-b) with the full zero-order hold approach, resulting in

\[
\begin{align*}
x((k+1)T_d) &= (1 - T_d p(kT_d))x(kT_d) + T_d u(kT_d), \\
y(kT_d) &= x(kT_d).
\end{align*}
\]

(1.6a)

This discrete-time representation is again a polytopic LPV system, and it is asymptotically stable (via a Lyapunov argument, see e.g. [2]) if and only if

\[
\exists K > 0 \text{ s.t. } A_d(p)K + A_d(p) - K < 0
\]

(1.7)
for all \(p \in \mathbb{P} \) where \(\mathcal{A}_d \) is defined in discrete time according to \(\mathcal{A} \). In this case \(\mathcal{A}_d(p) = 1 - T_d p \), meaning that we want to show that \(\exists K > 0 \) s.t.:

\[
(1 - T_d p)^2 K - K < 0.
\]

(1.8)

As \(K \) is assumed to be positive, thus (1.8) is equivalent with

\[
1 - 2T_d p + T_d^2 p^2 < 1,
-2T_d p + T_d^2 p^2 < 0,
T_d^2 p^2 < 2T_d p,
T_d p < 2,
\]

as \(p > 0 \). This gives that (1.6a) is asymptotically stable if and only if

\[
T_d < \frac{2}{p_{\max}}.
\]

(1.9)

1.3 Example 1: LFR realization

Consider the LFR realization of (1.6a-b). Introduce \(x_d(k) = x(kT_d) \) and \(u_d, p_d, y_d \) respectively. Let \(w_d(k) = p_d(k) x_d(k) \), then

\[
x_d(k+1) = x_d(k) - T_d w_d(k) + T_d u_d, \tag{1.10a}
\]

\[
z_d(k) = x_d(k), \tag{1.10b}
\]

\[
w_d(k) = p_d(k) z_d(k), \tag{1.10c}
\]

\[
y_d(k) = x_d(k). \tag{1.10d}
\]

From the previous equations, the realization

\[
\begin{bmatrix}
 x_d(k+1) \\
 z_d(k) \\
 y_d(k)
\end{bmatrix} =
\begin{bmatrix}
 1 & -T_d & T_d \\
 1 & 0 & 0 \\
 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_d(k) \\
 w_d(k) \\
 u_d(k)
\end{bmatrix}
\]

(1.11)

with \(\Delta_d(p_d)(k) = p(kT_d) \) trivially follows.

1.4 Example 2: computation of the state evolution

Given

\[
w(t) = p(kT_d)x(kT_d) + \frac{t - kT_d}{T_d} \left(p((k+1)T_d)x((k+1)T_d) - p(kT_d)x(kT_d) \right),
\]

and \(u(t) = u(kT_d) \) for \(t \in [kT_d, (k+1)T_d) \). It follows that for (1.1a-b) the state evolution inside of \([kT_d, (k+1)T_d)\) is

\[
x(t) = \int_{kT_d}^{t} -p(kT_d)x(kT_d) - \frac{t - kT_d}{T_d} \left(p((k+1)T_d)x((k+1)T_d) - p(kT_d)x(kT_d) \right) + u(kT_d) \, d\tau. \tag{1.13}
\]

By evaluation this integral for \(t = (k+1)T_d \), the resulting equation is

\[
x((k+1)T_d) = x(kT_d) - T_d p(kT_d)x(kT_d) - \\
\frac{((k+1)T_d)^2 + (kT_d)^2}{2T_d} - \frac{kT_d}{T_d} \left(p((k+1)T_d)x((k+1)T_d) - p(kT_d)x(kT_d) \right) + T_d u(kT_d). \tag{1.14}
\]

Now by collecting all terms w.r.t. \(x((k+1)T_d) \) to the left-hand side, it follows that

\[
\left(1 + \frac{1}{2} T_d p((k+1)T_d) \right) x((k+1)T_d) = \left(1 - \frac{1}{2} T_d p(kT_d) \right) x(kT_d) + T_d u(kT_d). \tag{1.15}
\]

4
1.5 Example 2: computation of the stability bound

Again consider stability in a Lyapunov sense by searching for a quadratic Lyapunov function \(V(x) = xKx \) with \(K > 0 \) such that

\[
\left(\frac{1 - \frac{1}{2}T_d p(kT_d)}{1 + \frac{1}{2}T_d p((k+1)T_d)} \right)^2 K - K < 0. \tag{1.16}
\]

This gives that by a Lyapunov argument, asymptotic stability holds if

\[
-1 < \frac{1 - \frac{1}{2}T_d p(kT_d)}{1 + \frac{1}{2}T_d p((k+1)T_d)} < 1. \tag{1.17}
\]

Consider the right-hand side. By multiplying with the positive denominator \((p(t) > 0) \), the expression reads as

\[
1 - \frac{1}{2}T_d p(kT_d) < 1 + \frac{1}{2}T_d p((k+1)T_d),
\]

\[
0 < \frac{1}{2}T_d p((k+1)T_d) + \frac{1}{2}T_d p(kT_d),
\]

which always holds as \(p(t) > 0 \). Consider the left-hand side of (1.17). Again by multiplying with the positive denominator \((p(t) > 0) \), the expression reads as

\[
-1 - \frac{1}{2}T_d p((k+1)T_d) < 1 - \frac{1}{2}T_d p(kT_d),
\]

\[
\frac{1}{2}T_d p(kT_d) - \frac{1}{2}T_d p((k+1)T_d) < 2,
\]

\[
T_d < \frac{4}{p(kT_d) - p((k+1)T_d)},
\]

\[
T_d < \frac{4}{p_{\text{max}} - p_{\text{min}}}. \tag{1.19}
\]

Note that this is a conservative stability bound as the underlying system is not polytopic. Consider now a \(p \)-dependent quadratic Lyapunov function \(V(x, p) = xK(p)x \) where \(K(p) = L(1 + \frac{1}{2}T_d p)^2 > 0 \) with \(L > 0 \). In this case \(V(x, p) \) qualifies as a Lyapunov function if (see page 96 in [3]):

\[
\left(\frac{1 - \frac{1}{2}T_d p(kT_d)}{1 + \frac{1}{2}T_d p((k+1)T_d)} \right)^2 K(qp)(kT_d) - K(p)(kT_d) < 0. \tag{1.18}
\]

This gives that

\[
\left(1 - \frac{1}{2}T_d p(kT_d) \right)^2 L - \left(1 + \frac{1}{2}T_d p(kT_d) \right)^2 L < 0. \tag{1.19}
\]

As \(L > 0 \), the underlying system is asymptotically stable if

\[
\left(1 - \frac{1}{2}T_d p(kT_d) \right)^2 < \left(1 + \frac{1}{2}T_d p(kT_d) \right)^2,
\]

which always holds due to the fact that \(p(t) > 0 \). This concludes that the system obtained via this DT representation is asymptotically stable for all \(T_d > 0 \).

1.6 Example 2: LFR realization

Consider the LFR realization of (1.15) with (1.6b). Introduce \(x_d(k) = x(kT_d) \) and \(u, p_d, y_d \) respectively. Introduce \(u_{d,1}(k) = p_d(k+1)x_d(k+1) \). This gives that

\[
x_d(k+1) = \frac{1}{2}T_d w_{d,1}(k) + \left(1 - \frac{1}{2}T_d p_d(k) \right) x_d(k) + T_d u_d(k). \tag{1.21}
\]
Now introduce \(w_{d,2}(k) = p_d(k)x_d(k) \). Then (1.21) can be rewritten as
\[
x_d(k+1) = x_d(k) - \frac{1}{2} T_d w_{d,1}(k) - \frac{1}{2} T_d w_{d,2}(k) + T_d u_d(k).
\]
(1.22)

Note that by introducing \(z_{d,2}(k) = x_d(k), \) \(w_{d,2}(k) = p_d(k)z_{d,2}(k) \). Let \(z_{d,1}(k) = x_d(k+1) \), hence it is characterized by (1.22). This also gives that \(w_{d,1}(k) = p_d(k+1)z_{d,1}(k) \). By collecting all previous equations in a matrix form, the resulting LFR is
\[
\begin{bmatrix}
 x_d(k+1) \\
 z_d(k) \\
 y_d(k)
\end{bmatrix} =
\begin{bmatrix}
 1 & -\frac{T_d}{2} & 0 & -\frac{T_d}{2} & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_d(k) \\
 u_d(k) \\
 v_d(k)
\end{bmatrix} + \begin{bmatrix}
 \Delta_d(p_d)(k) \end{bmatrix}.
\]
(1.23)

with \(\Delta_d(p_d)(k) = \begin{bmatrix} p((k+1)p_d) \\ 0 \end{bmatrix} \).

1.7 Example 3: LFR realization

Note that the corresponding discretization scheme is the same as the trapezoidal method for which the LFR realization is derived in [1]. Substituting \(A = 0, B_1 = -1, B_2 = 1, C_1 = 1, C_2 = 1 \) and zero for other matrices into the formulas given there, the resulting DT-LFR is
\[
\begin{bmatrix}
 \tilde{x}_d(k+1) \\
 \tilde{z}_d(k) \\
 \tilde{y}_d(k)
\end{bmatrix} =
\begin{bmatrix}
 1 & -\frac{T_d}{2} & 0 & -\frac{T_d}{2} & 0 \\
 \frac{T_d}{\sqrt{T_d}} & \frac{T_d}{\sqrt{T_d}} & 0 & 0 \\
 \frac{T_d}{\sqrt{T_d}} & \frac{T_d}{\sqrt{T_d}} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \tilde{x}_d(k) \\
 \tilde{u}_d(k) \\
 \tilde{v}_d(k)
\end{bmatrix} + \begin{bmatrix}
 \Delta_d(p_d)(k) \end{bmatrix}.
\]
(1.24)

with \(\Delta_d(p_d)(k) = p_d(k) \).

1.8 Example 3: computation of the stability bound

Note that according to the LFR realization (1.24):
\[
A_d(p_d) = A_d + B_{d,1}\Delta_d(p_d)(1 - D_{d,11}\Delta_d(p_d))^{-1}C_{d,1} = 1 - T_d p_d \left(1 + \frac{T_d}{2} p_d\right)^{-1}.
\]
(1.25)

Again, we can investigate asymptotic stability via condition (1.7). This means that we need to verify that \(\exists K > 0 \) s.t.:
\[
\left(1 - T_d p_d \left(1 + \frac{T_d}{2} p_d\right)^{-1}\right)^2 K - K < 0.
\]
(1.26)

As \(K \) is assumed to be positive, the above equation holds if and only if
\[
-1 < 1 - T_d p_d(k) \left(1 + \frac{T_d}{2} p_d(k)\right)^{-1} < 1,
\]
(1.27)

for all \(p_d \in \mathbb{R}_+ \) and \(k \in \mathbb{Z} \). Consider the right-hand side:
\[
1 - T_d p_d(k) \left(1 + \frac{T_d}{2} p_d(k)\right)^{-1} < 1,
\]
\[
1 + \frac{T_d}{2} p_d(k) - T_d p_d(k) < 1 + \frac{T_d}{2} p_d(k),
\]
\[
-T_d p_d(k) < 0,
\]
which holds for any \(T_d > 0 \) as \(p_d(k) > 0 \). Now consider the left-hand side of (1.27):
\[
-1 < 1 - T_d p_d(k) \left(1 + \frac{T_d}{2} p_d(k)\right)^{-1},
\]
\[
-2 - T_d p_d(k) < -T_d p_d(k),
\]
\[-2 < 0,
\]
which is trivially true. This concludes that the resulting DT-LFR form is asymptotically stable for any \(T_d > 0 \).
1.9 LFR realization via the rectangular approach

The rectangular approach provides the following approximation of the CT state evolution:

\[x((k + 1)T_d) \approx x(kT_d) + T_d Ax(kT_d) + T_d B_1 w(kT_d) + T_d B_2 u(kT_d). \]

(1.28)

Introduce \(x_d(k) = x(kT_d) \) and \(u_d, p_d, w_d, z_d, y_d \) respectively. Note that \(w_d(k) = \Delta(p)(kT_d)z_d(k) \) hence \(\Delta_d(p_d)(k) = \Delta(p)(kT_d) \). Then, the resulting DT form of the system is characterized by

\[
\begin{align*}
x_d(k + 1) & \approx (I + T_d A)x_d(k) + T_d B_1 w_d(k) + T_d B_2 u_d(k), \\
z_d(k) & = C_1 x_d(k) + D_{11} w_d(k) + D_{12} u_d(k), \\
y_d(k) & = C_2 x_d(k) + D_{21} w_d(k) + D_{22} u_d(k),
\end{align*}
\]

(1.29a)

(1.29b)

(1.29c)

Collecting these equations into a matrix form result in the following DT-LFR realization:

\[
\mathcal{R}_{LFR}(S, T_d) \approx \begin{bmatrix} I + T_d A & T_d B_1 & T_d B_2 \\ C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix},
\]

(1.30)

with \(\Delta_d(p_d)(k) = \Delta(p)(kT_d) \).

1.10 LFR realization via the polynomial approach

Based on the Taylor expansion of the matrix exponential:

\[
e^{T_d A(p(kT_d))} \approx I + \sum_{l=1}^{n} \frac{T_{d}^l}{l!} A^l(p)(kT_d),
\]

(1.31)

the state evolution is approximated as

\[
x((k + 1)T_d) \approx \left(I + \sum_{l=1}^{n} \frac{T_{d}^l}{l!} A^l(p)(kT_d) \right) x(kT_d) + \left(\sum_{l=1}^{n} \frac{T_{d}^l}{l!} A^{l-1}(p)(kT_d) \right) B(p)(kT_d) u(kT_d).
\]

(1.32)

Let’s consider the case when \(n = 1 \). Then the resulting expression is the same as (1.28) and hence the resulting LFR realization is given by (1.30).

Now consider the case when \(n = 2 \). Then (1.32) reads as

\[
x((k + 1)T_d) \approx \left(I + T_d A(p)(kT_d) + \frac{T_{d}^2}{2} A^2(p)(kT_d) \right) x(kT_d) + \left(T_d I + \frac{T_{d}^2}{2} A(p)(kT_d) \right) B(p)(kT_d) u(kT_d).
\]

(1.33)

The resulting DT matrix functions can be further extended as:

\[
\mathcal{A}_d(p_d) = I + T_d \left(A + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 \right) + \frac{T_{d}^2}{2} \left(A^2 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A + AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 \right)
\]

\[
\mathcal{B}_d(p_d) = T_d \left(B_2 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{12} \right) + \frac{T_{d}^2}{2} \left(AB_2 + AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{12} + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_2 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{12} \right)
\]

In these equations the new terms w.r.t. the \(n = 1 \) case are denoted by different colors. Now by using the existing realization of the \(n = 1 \) case, we can introduce a new auxiliary variable \(w_{d,2} \) such the additional dynamics denoted by the colors are realized. This gives the following LFR form where the colors indicate the parts that belong to the specific subparts in the previous equations:

\[
\mathcal{R}_{LFR}(S, T_d) \approx \begin{bmatrix} I + T_d A & T_d B_1 + \frac{T_{d}^2}{2} A^2 & T_d B_2 + \frac{T_{d}^2}{2} A B_2 \\ C_1 & D_{11} & D_{12} \\ C_1 B_1 & D_{21} & D_{22} \end{bmatrix},
\]

(1.34)
with $\Delta_d(p_d)(k) = I_{2\times 2} \otimes \Delta(p)(kT_d) = \begin{bmatrix} \Delta(p)^{(kT_d)}_0 & \Delta(p)^{(kT_d)}_0 \\ \Delta(p)^{(kT_d)}_0 & \Delta(p)^{(kT_d)}_0 \end{bmatrix}$.

Now consider the case when $n = 3$. Then

\[
A_d(p_d) = I + T_d A(p)(kT_d) + \frac{T_d^3}{2} A^2(p)(kT_d) + \frac{T_d^3}{6} A^3(p)(kT_d) = (* + \frac{T_d^3}{6} \left(A^3 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A^2 \\
+ AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A \\
+ A^2 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 + AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 \\
+ B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 \\
+ B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 \\
+ B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{11} \\
+ AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_2 + AB_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 D_{12} \\
+ B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{12} \\
+ B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 B_2 + B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} C_1 A B_1 \Delta(p_d)(I - D_{11} \Delta(p_d))^{-1} D_{12} \right)
\]

Again, in these equations the new terms w.r.t. the $n = 2$ case are denoted by different colors. Now by using the existing realization of the $n = 2$ case, we can introduce a new auxiliary variable $w_{d,2}$ such the additional dynamics denoted by the colors are realized. This gives the following LFR form where the colors indicate the parts that belong to the specific subparts in the previous equations:

\[
\begin{bmatrix}
I + T_d A + \frac{T_d^2}{2} A^2 + \frac{T_d^3}{6} A^3 \\
C_1 A \\
C_1 A^2 \\
C_2
\end{bmatrix}
\begin{bmatrix}
T_d B_1 + \frac{T_d^2}{2} A B_1 + \frac{T_d^3}{6} A^2 B_1 + \frac{T_d^4}{6} A B_1 + \frac{T_d^5}{12} B_1 & \frac{T_d^4}{12} B_1 & \frac{T_d^5}{12} B_1 & \frac{T_d^6}{12} B_1 & \frac{T_d^7}{12} B_1 & \frac{T_d^8}{12} B_1 & \frac{T_d^9}{12} B_1 & \frac{T_d^{10}}{12} B_1 & \frac{T_d^{11}}{12} B_1 & \frac{T_d^{12}}{12} B_1
\end{bmatrix}
\begin{bmatrix}
T_d B_2 + \frac{T_d^2}{2} A B_2 + \frac{T_d^3}{6} A^2 B_2
\end{bmatrix}
\]

with $\Delta_d(p_d)(k) = I_{2+1 \times 2+1} \otimes \Delta(p)(kT_d)$. This clearly proves by induction that for any $n \in \mathbb{N}$, the LFR form reads as

\[
\Re_{LFR}(S, T_d) \approx \begin{bmatrix}
\sum_{l=0}^{n} \frac{T_d^l}{l!} A^l & \sum_{l=1}^{n} \frac{T_d^{l-1}}{(l-1)!} B_1 & \sum_{l=2}^{n} \frac{T_d^{l-2}}{(l-2)!} B_1 & \cdots & \sum_{l=n}^{n} \frac{T_d^{l-n}}{(l-n)!} B_1 \\
C_1 A & C_1 A B_1 & C_1 A^2 B_1 & \cdots & C_1 A^{n-1} B_1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_2 A^{n-1} B_1 & C_2 A^{n-2} B_1 & C_2 A^{n-3} B_1 & \cdots & C_2 A^2 B_1 \\
D_2 & D_2 B_1 & D_2 B_2 & \cdots & D_2 A^{n-1} B_1
\end{bmatrix}
\begin{bmatrix}
\sum_{l=0}^{n} \frac{T_d^l}{l!} A^l B_2 \\
D_{11} & D_{12} & D_{13} & \cdots & D_{122}
\end{bmatrix}
\]

with $\Delta_d(p_d)(k) = I_{n \times n} \otimes \Delta(p)(kT_d)$.

1.11 Example 2nd-order polynomial: computation of the stability bound

Consider the example w.r.t. the polynomial discretization for $n = 2$. By the above given formulas, the resulting DT approximation reads as

\[
\begin{bmatrix}
x_d(k+1) \\
z_d(k) \\
y_d(k)
\end{bmatrix}
= \begin{bmatrix}
1 & -\frac{T_d}{2} & \frac{T_d}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_d(k) \\
w_d(k) \\
u_d(k)
\end{bmatrix}
\]

In this case, the state equation is characterized by

\[
A_d(p_d) = A_d + B_{d,1} \Delta_d(p_d)(I - D_{d,11} \Delta_d(p_d))^{-1} C_{d,1} = 1 - T_d p_d + \frac{T_d^2}{2} p_d^2.
\]
Again, we can investigate asymptotic stability via condition (1.7). This means that we need to verify that \(\exists K > 0 \) s.t.:

\[
\left(1 - T_d p_d + \frac{T_d^2}{2} p_d^2 \right)^2 K - K < 0.
\]

As \(K \) is assumed to be positive, the above equation holds if and only if

\[
-1 < 1 - T_d p_d + \frac{T_d^2}{2} p_d^2 < 1.
\]

Consider the right-hand side:

\[
1 - T_d p_d + \frac{T_d^2}{2} p_d^2 < 1,
\]

\[-T_d p_d + \frac{T_d^2}{2} p_d^2 < 0,
\]

\[
\frac{T_d^2}{2} p_d^2 < T_d p_d,
\]

\[
\frac{T_d}{2} p_d < 1,
\]

\[
T_d < \frac{2}{p_{\max}}.
\]

Consider the left-hand side:

\[-1 < 1 - T_d p_d + \frac{T_d^2}{2} p_d^2,
\]

\[0 < 2 - T_d p_d + \frac{T_d^2}{2} p_d^2,
\]

where the roots of the above given polynomial are

\[
\lambda_{1,2} = \frac{T_d \pm \sqrt{T_d^2 - 4T_d^2}}{2} = \frac{T_d \pm i\sqrt{3}T_d}{2}.
\]

Based on these roots, the condition always holds. This concludes that the DT approximation is asymptotically stable if \(T_d < \frac{2}{p_{\max}} \).

1.12 LFR realization via the 1,1-Padé approach

Consider the 1,1-step -Padé approach for the discretization of the CT state evolution. This gives the following approximation:

\[
\left(I - \frac{T_d}{2} A(p)(kT_d) \right) x((k+1)T_d) \approx \left(I + \frac{T_d}{2} A(p)(kT_d) \right) x(kT_d) + T_d B(p)(kT_d) u(kT_d),
\]

where

\[
A(p) = A + B_1 \Delta(p)(I - D_{11} \Delta(p))^{-1} C_1,
\]

\[
B(p) = B_2 + B_1 \Delta(p)(I - D_{11} \Delta(p))^{-1} D_{12}.
\]

Introduce \(x_d(k) = x(kT_d) \) and \(u_d, p_d, y_d \) respectively. Furthermore, define an auxiliary signal \(s(k) \), s.t.

\[
s(k+1) = \Delta(p_d)(k)(I - D_{11} \Delta(p_d)(k))^{-1} C_1 x_d(k+1).
\]

Then (1.41) can be rewritten as:

\[
\left(I - \frac{T_d}{2} A \right) x_d(k+1) \approx \frac{T_d}{2} B_1 s(k+1) + \left(I + \frac{T_d}{2} A(p_d)(k) \right) x_d(kT_d) + T_d B(p_d)(k) u_d(k).
\]
where \((I - \frac{T_d}{2}A)^{-1} = \Psi\) is assumed to exist. Now introduce the signal

\[
w_2(k) = \Delta(p_d)(k)(I - D_{11}\Delta(p_d)(k))^{-1}(C_1x_d(k) + D_{12}u_d(k)). \quad (1.45)
\]

Then (1.44) can be rewritten as

\[
x_d(k + 1) \approx \Psi \left(\frac{T_d}{2}B_1s(k + 1) + \frac{T_d}{2}B_1\Delta(p_d)(k)(I - D_{11}\Delta(p_d)(k))^{-1}D_{12}u_d(k) \right) + \Psi \left(I + \frac{T_d}{2}A \right)x_d(kT_d) + \frac{T_d}{2}\Psi B_1w_2(k) + T_d\Psi B_2u_d(k). \quad (1.46)
\]

Next, introduce

\[
w_1(k) = s(k + 1) + \Delta(p_d)(k)(I - D_{11}\Delta(p_d)(k))^{-1}D_{12}u_d(k),
\]

\[
= \Delta(p_d)(k)(I - D_{11}\Delta(p_d)(k))^{-1}(C_1x_d(k + 1) + D_{12}u_d(k)), \quad (1.47)
\]

such that the previous equation reads as

\[
x_d(k + 1) \approx \frac{T_d}{2}\Psi B_1w_1(k) + \Psi \left(I + \frac{T_d}{2}A \right)x_d(kT_d) + \frac{T_d}{2}\Psi B_1w_2(k) + T_d\Psi B_2u_d(k). \quad (1.48)
\]

Now substitute (1.48) into (1.47) resulting in

\[
w_1(k) = \Delta(p_d)(k)(I - D_{11}\Delta(p_d)(k))^{-1}\left(\frac{T_d}{2}C_1\Psi B_1w_1(k) + C_1\Psi \left(I + \frac{T_d}{2}A \right)x_d(kT_d) \right.
\]

\[
+ \frac{T_d}{2}C_1\Psi B_1w_2(k) + (T_dC_1\Psi B_2 + D_{12})u_d(k) \right).
\]

Next, introduce \(w_1(k) = \Delta(p_d)(k)z_1(k)\) and \(w_2(k) = \Delta(p_d)(k)z_2(k)\). Note that the realization of the output equation is the same as in the continuous case by using the latent variable \(w_2\). Then collecting (1.48), (1.45) and (1.49) into a matrix form, the resulting a minimal DT-LFR realization of (1.41) reads as

\[
\mathcal{R}_{LFR}(S, T_d) \approx \begin{bmatrix}
(I + \frac{T_d}{2}A)\Psi & \frac{T_d}{2}\Psi B_1 & \frac{T_d}{2}\Psi B_1 & T_d\Psi B_2 \\
C_1(I + \frac{T_d}{2}A)\Psi & \frac{T_d}{2}C_1\Psi B_1 + D_{11} & \frac{T_d}{2}C_1\Psi B_1 + D_{11} & T_dC_1\Psi B_2 + D_{12} \\
0 & 0 & 0 & D_{12}
\end{bmatrix},
\]

(1.50)

with \(\Psi = (I - \frac{T_d}{2}A)^{-1}\) and \(\Delta_d(p_d)(k) = I_{2\times2} \otimes \Delta(p)(kT_d)\).

1.13 Example 1,1-Padé: computation of the stability bound

Considering the previously given discretization form, Padé’s expansion method with \((i, j) = (1, 1)\) results in the following DT approximation of (1.1a-b):

\[
\begin{bmatrix}
1 & -\frac{T_d}{2} & -\frac{T_d}{2} & \frac{T_d}{2} \\
1 & -\frac{T_d}{2} & -\frac{T_d}{2} & \frac{T_d}{2} \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_d(k + 1) \\
z_d(k) \\
y_d(k) \\
w_d(k)
\end{bmatrix} = \begin{bmatrix}
x_d(k) \\
w_d(k) \\
u_d(k)
\end{bmatrix}.
\]

(1.51)

In this case, the state equation is characterized by

\[
A_d(p_d) = A_d + B_{d,1}\Delta_d(p_d)(I - D_{d,11}\Delta_d(p_d))^{-1}C_{d,1} = 1 - T_dp_d \left(1 + \frac{T_d}{2}p_d \right)^{-1}.
\]

(1.52)

Further proof of the asymptotic stability follows according to Sec. 1.8.
1.14 LFR realization via the trapezoidal approach

Note that the underlaying realization is classical and can be found in many works like [1].

1.15 LFR realization via the 3-step Adams-Bashforth approach

Consider the 3-step Adams-Bashforth approach for the discretization of the CT state evolution. This gives the following approximation:

\[x((k + 1)T_d) \approx x(kT_d) + \frac{T_d}{12} (5f|_{(k-2)T_d} - 16f|_{(k-1)T_d} + 23f|_{kT_d}). \] (1.53)

Introduce a new state variable

\[\tilde{x}_d(k) = \begin{bmatrix} x\top(kT_d) & f\top|_{(k-1)T_d} & f\top|_{(k-2)T_d} \end{bmatrix}, \] (1.54)

which gives that

\[x((k + 1)T_d) \approx \left[I + \frac{23T_d}{12} A(p)(kT_d) - \frac{16T_d}{12} \right] \tilde{x}_d(k) + \frac{23T_d}{12} B(p)(kT_d)u(kT_d). \] (1.55a)

Furthermore, it holds that

\[x_{d,2}(k+1) = A(p)(kT_d)x(kT_d) + B(p)(kT_d)u(kT_d), \] (1.55b)
\[x_{d,3}(k+1) = x_{d,2}(k). \] (1.55c)

By substituting \(x(kT_d) \) with \(x_{d,2}(k) \), equations (1.55a-c) lead straightforwardly to the DT-LFR:

\[
\Re_{\text{LFR}}(S, T_d) \approx \begin{bmatrix}
I + \frac{23T_d}{12} A & -\frac{16T_d}{12} I & \frac{5T_d}{12} I & \frac{23T_d}{12} B_1 & \frac{23T_d}{12} B_2 \\
A & 0 & 0 & B_1 & B_2 \\
0 & I & 0 & 0 & 0 \\
C_1 & 0 & 0 & D_{11} & D_{12} \\
C_2 & 0 & 0 & D_{21} & D_{22}
\end{bmatrix}
\] (1.56)

with \(\Delta_d(p_d)(k) = \Delta(p)(kT_d) \).
Bibliography

